61 research outputs found

    Complexity, rate, and scale in sliding friction dynamics between a finger and textured surface.

    Get PDF
    Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch

    Contact geometry and mechanics predict friction forces during tactile surface exploration

    Get PDF
    International audienceWhen we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as " tactile blind spots ". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality

    Modeling of frictional forces during bare-finger interactions with solid surfaces

    Get PDF
    Touching an object with our fingers yields frictional forces that allow us to perceive and explore its texture, shape, and other features, facilitating grasping and manipulation. While the relevance of dynamic frictional forces to sensory and motor function in the hand is well established, the way that they reflect the shape, features, and composition of touched objects is poorly understood. Haptic displays -electronic interfaces for stimulating the sense of touch- often aim to elicit the perceptual experience of touching real surfaces by delivering forces to the fingers that mimic those felt when touching real surfaces. However, the design and applications of such displays have been limited by the lack of knowledge about what forces are felt during real touch interactions. This represents a major gap in current knowledge about tactile function and haptic engineering. This dissertation addresses some aspects that would assist in their understanding. The goal of this research was to measure, characterize, and model frictional forces produced by a bare finger sliding over surfaces of multiple shapes. The major contributions of this work are (1) the design and development of a sensing system for capturing fingertip motion and forces during tactile exploration of real surfaces; (2) measurement and characterization of contact forces and the deformation of finger tissues during sliding over relief surfaces; (3) the development of a low order model of frictional force production based on surface specifications; (4) the analysis and modeling of contact geometry, interfacial mechanics, and their effects in frictional force production during tactile exploration of relief surfaces. This research aims to guide the design of algorithms for the haptic rendering of surface textures and shape. Such algorithms can be used to enhance human-machine interfaces, such as touch-screen displays, by (1) enabling users to feel surface characteristics also presented visually; (2) facilitating interaction with these devices; and (3) reducing the need for visual input to interact with them.Ph.D., Electrical Engineering -- Drexel University, 201

    Serological evidence of influenza a viruses in frugivorous bats from Africa

    Get PDF
    Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes - H17N10 and H18N11 - in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum) sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA) types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5ÎĽl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from

    The Iceman's Last Meal Consisted of Fat, Wild Meat, and Cereals

    Get PDF
    The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-yearold European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    Dynamic Measurements Using FDM 3D-Printed Embedded Strain Sensors

    No full text
    3D-printing technology is opening up new possibilities for the co-printing of sensory elements. While quasi-static research has shown promise, the dynamic performance has yet to be researched. This study researched smart 3D structures with embedded and printed sensory elements. The embedded strain sensor was based on the conductive PLA (Polylactic Acid) material. The research was focused on dynamic measurements of the strain and considered the theoretical background of the piezoresistivity of conductive PLA materials, the temperature effects, the nonlinearities, the dynamic range, the electromagnetic sensitivity and the frequency range. A quasi-static calibration used in the dynamic measurements was proposed. It was shown that the temperature effects were negligible, the sensory element was linear as long as the structure had a linear response, the dynamic range started at ∼ 30 μ ϵ and broadband performance was in the range of few kHz (depending on the size of the printed sensor). The promising results support future applications of smart 3D-printed systems with embedded sensory elements being used for dynamic measurements in areas where currently piezo-crystal-based sensors are used
    • …
    corecore